Kernel-based Inference in Time-varying Coefficient Cointegrating Regression
نویسندگان
چکیده
This paper studies nonlinear cointegrating models with time-varying coefficients and multiple nonstationary regressors using classic kernel smoothing methods to estimate the coefficient functions. Extending earlier work on nonstationary kernel regression to take account of practical features of the data, we allow the regressors to be cointegrated and to embody a mixture of stochastic and deterministic trends, complications which result in asymptotic degeneracy of the kernel-weighted signal matrix. To address these complications new local and global rotation techniques are introduced to transform the covariate space to accommodate multiple scenarios of induced degeneracy. Under certain regularity conditions we derive asymptotic results that differ substantially from existing kernel regression asymptotics, leading to new limit theory under multiple convergence rates. For the practically important case of endogenous nonstationary regressors we propose a fully-modified kernel estimator whose limit distribution theory corresponds to the prototypical pure (i.e., exogenous covariate) cointegration case, thereby facilitating inference using a generalized Wald-type test statistic. These results substantially generalize econometric estimation and testing techniques in the cointegration literature to accommodate time variation and complications of co-moving regressors. Finally an empirical illustration to aggregate US data on consumption, income, and interest rates is provided.
منابع مشابه
Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION
متن کامل
Structural Nonparametric Cointegrating Regression
Nonparametric estimation of a structural cointegrating regression model is studied. As in the standard linear cointegrating regression model, the regressor and the dependent variable are jointly dependent and contemporaneously correlated. In nonparametric estimation problems, joint dependence is known to be a major complication that affects identification, induces bias in conventional kernel es...
متن کاملSTRUCTURAL NONPARAMETRIC COINTEGRATING REGRESSION By
Nonparametric estimation of a structural cointegrating regression model is studied. As in the standard linear cointegrating regression model, the regressor and the dependent variable are jointly dependent and contemporaneously correlated. In nonparametric estimation problems, joint dependence is known to be a major complication that affects identification, induces bias in conventional kernel es...
متن کاملQuantile Cointegrating Regression
Quantile regression has important applications in risk management, portfolio optimization, and asset pricing. The current paper studies estimation, inference and nancial applications of quantile regression with cointegrated time series. In addition, a new cointegration model with varying coe¢ cients is proposed. In the proposed model, the value of cointegrating coe¢ cients may be a¤ected by th...
متن کاملInference of high-dimensional linear models with time-varying coefficients
We propose a pointwise inference algorithm for high-dimensional linear models with time-varying coefficients. The method is based on a novel combination of the nonparametric kernel smoothing technique and a Lasso bias-corrected ridge regression estimator. Due to the non-stationarity feature of the model, dynamic bias-variance decomposition of the estimator is obtained. With a bias-correction pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017